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A recurrence formula for obtaining certain matrix elements 
in the base of eigenfunctions of the Hamiltonian for a 
particular screened potential 

Ulla Myhrman 
Institute of Theoretical Physics, University of Uppsala, Uppsala, Sweden 

Received 19 January 1982, in final form 23 August 1982 

Abstract. A recurrence formula for obtaining matrix elements of products of powers of 
exp(-vr) and 1 -expi-vr) is derived. The matrix elements are calculated in the base of 
eigenfunctions of the Hamiltonian for the effective potential -A exp(-vr)/[l - exp(-vr)] + 
p expi-vr)/[l -exp(-vr)]’, where A ,  U and p are positive constants. This potential can 
be considered as a generalisation of a potential suggested by Hylleraas and Risberg and 
by Hulthen. In the limit of the parameter U tending to zero the recurrence formula is 
transformed into a recurrence formula given by Badawi et al for matrix elements of powers 
of r for the hydrogen atom. 

1. Introduction 

The usefulness of exactly solvable models of atomic potentials has been pointed out 
by, for example, Lindhard and Winther (1971). In a previous paper by this author 
(Myhrman 1980) the radial Schrodinger equation 

where we use standard notations, has been solved when the effective potential is 

The potential has the proper general characteristics for a diatomic molecule potential 
function, as pointed out by Manning and Rosen (1933). The matrix elements derived 
in this paper can thus be used in calculating rotation-vibration intensities in diatomic 
molecules. The constants involved must of course in this case be given an appropriate 
interpretation. 

In this paper we let V(r) represent an attractive screened Coulomb potential, 
which tends to Ze2/ r  as v + 0, and choose 

where Ze is the charge of the nucleon. For physical reasons we choose the constants 
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264 UMyhrman 

v and 1 such that v > 0 and Is 0, which, according to (3a, b), implies that A > 0 and 

A more detailed investigation of the effective potential (2) is made by Myhrman 
(1980). We should only point out here that, according to (3a, b), a change of the 
value of 1 implies a change of the physical potential V ( r ) .  

/A. s o .  

Introducing the new constants 

a = 2mE/ii2v2 (4a 1 
b = 2m(A - g ) / h 2 v 2  (4b 1 

and the new variable 

z = vr, ( 5 )  

the radial Schrodinger equation (1) with V(r) + 1(1+ l)ii2/2mr2 given by (2) can, by 
means of (3b), (4a, 6 )  and ( 5 ) ,  be written 

a+-------- U = o .  
dz 

For 1 = 0 this equation is simplified into equation (5.4) given by Hylleraas and Risberg 
(1941) and equation (6) given by HulthCn (1942). 

For the  bound state problem the energy E < 0, which according to (4a)  implies 
that J-a is a real parameter. This parameter shall be chosen to be positive. Imposing 
the boundary conditions 

u ( 0 )  = 0 

U (r) + 0 r + m  

and normalising U according to 
oc lo / u I 2 d r  = 1, 

we get the normalised solutions of (6) as 

2 J G ( l  + k + JG)r(21 + 1 + k)r(21+ 1 + k + 24;) ' I 2  1 
) r(21-2) 

u k - l =  V 
( l + k ) r ( k ) r ( k  +2J<) 

7 
- 2 4 - 0  

( 
x e (1 -e-')I+'F(-(k - l ) ,  21 + 1 + k +2&; 21 +2 ;  1 -e-') 

where k is a positive integer fulfilling the inequality 

0 < k < [b + 1(1+ 1)]''2 - 1 

and where the conditions 

Re(2J-a)  > 0 

Re(21+ 2 )  > 0 
and 

have to be fulfilled in order to make the integral in (8) convergent. The energy 
eigenvalues are obtained as 

2 b + 1(1+ 1) 
E=---- -k-1) (12) 
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where k is a positive integer fulfilling (10). A detailed derivation of the normalised 
eigenfunctions and the energy eigenvalues is given by Myhrman (1980). 

Specialising (9), (10) and (12) to 1 = 0, we obtain formulae given by HulthCn 
(1942, § 1). Inserting (3a, b )  and (4a, b )  into (12), letting the parameter v + 0, putting 
2 = 1 and noting that k + I  = n is the principal quantum number, we get the energy 
eigenvalues for the hydrogen atom. 

2. Definition and calculation of the matrix elements .U~:;,V-I 

Assuming that 

Re(A + J<+ J z )  > 0 

and 

Re(B +21+ 3)  > O ,  

A and B being integers, we define the matrix elements of products of the Ath power 
of e-”‘ and the Bth power of 1 - e-”r as 

In order to obtain a recurrence formula for matrix elements &;fLBl,k8-1 we shall 
use the factorisation method (Infeld 1941, Infeld and Hull 1951). Introducing the 
new independent variable 

C = ln[tanh(z/4)] (15) 

is the Bohr radius, we can, if we use (4a)  and (12), write the differential equation (6) 
as 

- (1 +i)2Gk+i-1/2 = 0. 

This equation can be factorised as 

+ ( k  + I  -$)  coth i-- 

+ (k + 1 - 5 )  coth 5 b +1(1+ 1) xi- k + l  s inh i  
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and as 

( - b  +'('+ + (k + 1 + + )  coth 5 +- 

d 

k + l  s i n h l  

b + l ( I + l )  1 - + (k + I +  i) cot h 5 - -) G k +, - 1/ '(- k + l  s i n h l  d5  
= [ (k + 1 + i)' - (1 + $)2]G k + I  - 112 . 

We now define the operators H :  according to 

+ t  coth5F-  b + l ( l + l )  1 
sinh 5 H :  = (- 

where k is a fixed parameter and t is a parameter which can take on different 
values differing from each other by an arbitrary integer. Let then 
. . . GI-1,  GI,  . . be a sequence of real functions fulfilling the relations 

1 112 H;Gl=[( t - l - : ) ( t+l+I)]  GI-1 

and 
1 1 / 2  H:GI-I = [ ( t - l - i ) ( t + l + ~ ) ]  GI 

for an arbitrary value of the index t. From (21~2, b )  it follows that 

H:H;G, = [ t ' -  ( I  + i)2]Gl 

HL+lH:+lGI = [ ( t +  1 ) 2 - ( l + $ ) 2 ] G 1 .  (22b) 

In order that the definition of G, be consistent, the functions G, have to fulfil (22a, 6 )  
for any possible value of t. Inserting the definition (20) into (22a)  and the correspond- 
ing definition of H?+l into (226), we get 

(22a 1 
and from (21~2, b )  with t replaced by t + 1 it follows that 

b+1(1+1) 1 b + l ( 1 + 1 )  1 + t coth 5 + L, G, 
d l  (- k + l  s i n h l  + fco th6 -L) ( -  d5 k + l  s i n h i  

=[t2- ( l+i )2]G,  

and 

+ ( t  + 1) coth 6 + - b + l ( l + l )  1 
(- k + l  s i n h l  

b + l ( l + l )  1 
'(- k + l  s i n h i  

= [ ( t  + 1)2 - ( I  + $)2]Gl. (236) 
Comparing (19a, b )  and (23a, b )  we realise immediately that GI is a solution of (18) 
w h e n t = k + l - i .  

The necessary condition for G, to be quadratically integrable is (cf p 25 in Infeld 
and Hull (1951)) 

(24) t - 1 - L -  2 - U = integer 2 0. 
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For r = I + $  we obtain from (20) and (21a) the differential equation 

the general solution of which is 

b + 1(1+  1) - I -+) tanh-’ e‘] (26) exp[-2( k + l  
1 ‘ f + l l 2  Gi+l,2 = N[1 -exp(-4 tanh- e )] 

where N is an arbitrary constant factor. Assuming that 

Re ( b  +;; ; 1) -1 )  > o  

and 

Re(21+ 1) > 0, 

we obtain from (26) 

Using (21a, b )  we can easily show that 

where v is an arbitrary positive integer. Let us choose U = k - 1. The left-hand side 
of (29) can then also be expressed in the functions U. Using ( 5 ) ,  (15) and (16), we get 

Since the function u k - 1  is normalised according to (8), (30) can be written 

Inserting formu:ae (4a) and (12) and formulae (47’) and (50’) of Myhrman ( 
namely 

((1 ( l + k  +J<)/(l + k )  

into (31), we obtain 

b + 1(1+ 1) 
k + I  - k  -1) (b + 1(1 + I )+ k + 1) ( 

aov2 k + 1 0 

!k + 1)(21+ 1) ( G k + r - 1 / 2 I 2  d t  = 7 

1980), 

(33) 



268 U Myhrman 

Equations ( 2 8 ) ,  ( 2 9 )  and ( 3 3 )  then give us 

b +1(1+ 1) b + l ( l +  1) 
k + I  

k + l  
(34) 

are defined by (14). For fixed k 
From ( 2 6 )  and ( 3 4 )  the function Glsl,r is now completely determined. 

and k‘  we also define 
The general matrix elements of (e-”r)A(l 

which for the special choice U = k - 1 and U ’  = k ’ -  1 gives 

(36) A B  A.B 
Nk:1,k8-1 = A k - l , k ’ - l .  

In order to get explicit expressions for an arbitrary matrix element we have to 
calculate .+”:;E for U = U ’  = 0 ,  i.e. 

In order to make the integral in ( 3 7 )  convergent we assume 

k ‘ + l  

and 

Re@ + 21 + 3) > 0.  

From equation ( 3 7 )  with ( 2 6 )  and ( 3 4 )  inserted we then get 

&y = ( - 1 ) k + k ’  

b + l ( l +  1) b+1(1+1) b + l ( l + l )  - k ’ -  I) 

( k  + l ) ( k ’  + I )  

k + l  
X 

k ’ +  I 
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If we now choose k = k ‘  = 1 in (39) we get the matrix element 

or in another notation 

r ( 2 1 + 3 + ~ ) r ( 2 1 + 3 + 2 J - a ) ~ ( ~  + 2 J T )  
r ( 2 1 +  3 ) r ( 2 J T ) r ( 2 1 +  3 + A  + B + 2 J T )  

”4;: = 

where J-a,  is defined by (4a)  and (12) with k = 1 inserted. 
Returning to formula (35) we find by means of (21a, b )  that for U > O  

( H L 1 / 2 - a  G 1 - 1 / 2 + u  1 Ip, 2 [U (21 + U + 1 ) y  J v y  = - 
2 

aov 
( e - u r l A - l ( l  - e - v r ) B + 2  G1+1/2+L’ d i  

x (1 -e-yr)B-e2Gl+l,z+u,) d i  (42) 

since the operators H?+1,2+o are mutual adjoint. The following relations can easily 
be shown: 

Hl+1,2+L [(e-”r)A-l(l  - e-vr)B-c2] 
= [ ( e - v r ) A - l ( l  - e - u r ) B + 2 ]  

x[-(A-1)  e”r /2(1-e-”‘ )+(B+2)  e - ” r / 2 + H l , ~ / 2 + u ]  (43a 1 
and 

Using (15) and (43a, b )  we get 

H1+1/2+o[(e- ) (1-e- I vr A-I  ur B + 2  

)] +(e-”’)-1’2(B + 2 + v ’ - v ) + H l + 1 , 2 + , ~  
1 b + l ( l +  1) b + 1 ( 1 +  1) - 

+ T (  k + l  k ’ +  1 
(44) 

Inserting (44) into (42), we obtain 

,V$E = [ ~ ( 2 1 + ~  + 1)]-1’2( [ ~ ’ ( 2 l i ~ ’ + l ) ] ’ / ~ J v ~ ~ ~ , , ~ _ ~  +(B + 2 + ~ ’ - u ) A ‘ . l . r , ^ _ i ~ ~ 2 ~ ~  

1 b + 1(1+ 1) b + 1(1+ 1) 
2 (  k + l  k ‘ + l  

- 1 -A - B - 1 t ~ ( t ’  - U ’ )  + - 
(45) 



270 U Myhrman 

If we let v + 0 in the recurrence formula (45) we get exactly the same expression as 
was found by Badawi et al (1973) for the hydrogen atom. 

The recurrence formula (45) and its counterpart, obtained by formally interchang- 
ing k ,  U and k ’ ,  U’, are, together with formulae (36 )  and (391, all that is necessary for 
calculating any matrix element (14). 
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